
A Model of Computation for the NRL Protocol Analyzer

Catherine Meadows

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

Abstract

In this paper we develop a model of computation for
the NRL Protocol Analyzer by modifying and extend-
ing the model of computation for Burroughs, Abadi,
and Needham (BAN) logic developed by Abadi and
Tuttle. We use the results to point out the similar-
ities and di�erences between the NRL Protocol Ana-
lyzer and BAN logic, and discuss the issues this raises
with respect to the possible integration of the two.

1 Introduction

Although a substantial amount of work exists both

in the development of logics for cryptographic pro-

tocol analysis and in more traditional state-machine

systems, little work has been done in comparing the

two approaches or in comparing individual examples

of each. However, such work could potentially be of

great bene�t. Historically, each approach has advan-

tages and disadvantages that are o�set by the other.

It is possible to develop logics for cryptographic proto-

col analysis, such as Burrows-Abadi-Needham (BAN)

logic [BAN90], that are tractable and easy to apply.

However, since the logic is highly abstracted from the

protocol, it is often di�cult to determine what kinds

of assurance of correctness one gets from applying it.

State-machine systems are less likely to have this prob-

lem, since they give a more concrete representation of

the protocol; on the other hand, since they typically

model an intruder capable of a wide variety of actions,

the state space explosion problem is even worse than

it is for the analysis of conventional communication

protocols. For example, the NRL Protocol Analyzer

produces an unbounded number of states; much of the

work of using it is in proving lemmas that reduce the

set of possible states to something that can be checked

by exhaustive search.

One way of taking advantage of the strengths of

each of the two approaches is to integrate them by

developing a logic for which the state machine tool

can serve as a semantics. This allows us to use a

state machine tool as a model checker for the logic.

Thus is the goal of the work by Syverson and Mead-

ows [SM93, SM94] in their work on a temporal lan-

guage for protocol requirements, in which the NRL

Protocol Analyzer serves as a semantics for the lan-

guage. Requirements are expressed in the language,

and are then validated using the NRL Protocol Ana-

lyzer. The ultimate goal is to be able to reason about

requirements directly in the logic, as well.

Another approach to integrating logics with state

machine analysis tools is to integrate two existing sys-

tems. This has the advantage of allowing people to

keep using the systems they are familiar with and have

found most useful, while giving added power to each.

However, care must be taken to ensure that the the

systems to be composed are actually compatible before

applying this approach. For example, systems that are

based on widely di�ering models of computation are

unlikely to be integrated with any pro�t.

In this paper we explore the possible compatibility

between a state-based tool, the NRL Protocol Ana-

lyzer, and the modi�ed BAN logic developed by Abadi

and Tuttle. The NRL Protocol Analyzer and BAN

logic can be said to represent the extremes of the two

approaches. BAN logic, although subtle enough to

be used to �nd previously unknown 
aws in crypto-

graphic protocols, is extremely tractable, so much so

that BAN analyses can usually be done by hand. How-

ever, it has also been criticized because of the di�culty

of the idealization process and because the limits of the

class of protocol 
aws that it captures are still not that

well understood [Nes90, Syv92, GKSG91]. Moreover,

when a BAN proof fails, the protocol veri�er must still

�gure out what the attack on the 
awed protocol is.

The NRL Protocol Analyzer, on the other hand, re-

quires a more concrete representation of the protocol

and the intruder's ability; thus it is easier to under-

stand what it can and cannot prove. It also has the

ability to generate attacks on a 
awed protocol. But,



since it works by generating complete descriptions of

all states that can immediately precede a given state,

much of the user's time is devoted to reducing the

search space to a manageable size. Thus, if it is pos-

sible to discover a protocol 
aw using BAN logic, it is

preferable to use BAN rather than the NRL Protocol

Analyzer.

With this in mind, several people have suggested

to the author of this paper that one way to proceed

would be to use BAN logic as a front end to the NRL

Protocol Analyzer. Speci�cations in BAN logic could

be mapped the more concrete NRL Protocol Analyzer

speci�cations. If a proof failed in the BAN analysis,

the NRL Protocol Analyzer could be used to generate

the related attacks. If a proof succeeded in the BAN

analysis, the NRL Protocol Analyzer could be used to

verify the assumptions used in the proof. Thus one

would have the bene�t of the quick analyses possible

with BAN logic, as well as of the more concrete ap-

proach of the NRL Protocol Analyzer.

However, before we can adopt such an approach

we need to understand the degree of compatibility be-

tween the NRL Protocol Analyzer and BAN logic. If

the two methods make vastly di�erent assumptions

about cryptographic protocols and the environment

in which they operate, integration is likely to require

so many changes to one or both of the methods that

it would have been better to start from scratch. For-

tunately, Abadi and Tuttle [AT91] have provided a

semantics for a modi�ed BAN logic in which they set

forth a model of computation. This model of computa-

tion describes the assumptions made by the modi�ed

logic about the way in which a cryptographic proto-

col operates and interacts with the environment. We

do this by constructing a model of computation based

on the model of computation that Abadi and Tuttle

developed for a modi�ed version of BAN logic.

Finally, we emphasize that, although the work pre-

sented here was inspired by the desire to investigate

the integrability of two speci�c protocol analysis sys-

tems, the purpose of this paper goes beyond that. The

results of this work also allow us to develop a basis

of comparison between the two systems that can be

used to better understand their respective strengths

and weaknesses, as well as provide a possible basis for

comparison with other veri�cation systems for crypto-

graphic protocols.

2 The NRL Protocol Analyzer

In this section we give a brief overview of the way in

which the NRL Protocol Analyzer operates. A more

complete description may be found in [Mea94].

The Analyzer is based upon a version of the term-

rewriting model of Dolev and Yao [DY83]. In the

Dolev-Yao model, it is assumed that there is an in-

truder who is able to read all message tra�c, mod-

ify and destroy any message tra�c, and perform any

operation (such as encryption or decryption) that is

available to a legitimate user of the protocol. How-

ever, it is assumed that there is some set of words (for

example encryption keys possessed by honest princi-

pals, or messages that have been encrypted) that the

intruder does not already know. The intruder's goal is

to cause principals to reach certain states that are in-

compatible with the correct operation of the protocol.

Since any message received by an honest principal can

be thought of as having been sent by the intruder, we

can think of the protocol as an algebraic system ma-

nipulated by the intruder. His goal is to manipulate

it in such a way that an \insecure" state is reached.

In the NRL Protocol Analyzer, protocols are spec-

i�ed as a set of transitions of state machines. Each

transition rule is speci�ed in terms of the following:

1. words that must be input by the intruder before

a rule can �re;

2. values that must be held by local state variables

before the rule can �re;

3. words output by the principal (and hence learned

by the intruder) after the rule �res, and;

4. new values taken on by local state variables after

the rule �res.

The words involved in these rules obey a set of re-

duction rules. A few of these are built-in rules sup-

plied by the system, but most are described by the

speci�cation writer.

The user of the Protocol Analyzer queries it by pre-

senting it with a description of a state in terms of

words known by the intruder and values of local state

variables. Both words known by the intruder and val-

ues of local state variables are assumed already to be

in their reduced form. The Analyzer takes each subset

of the words and local state variables speci�ed by the

user and, for each transition rule, uses a narrowing al-

gorithm to �nd a complete set of substitutions (if any

exist) that make the output of the rule reducible to

that subset. In each case when that is done, the in-

put of the rule, together with any portions of the state

that were not matched, are displayed as a description

of a state that may immediately precede the speci�ed

state. Thus the Analyzer gives a complete description

of all states that may precede the speci�ed state.



Once this is done, the user may query each of the

preceding states in turn. He or she can then query

the states immediately preceding those states, and so

on, or the Analyzer can perform the queries automat-

ically. The Analyzer includes certain features that al-

low the user to prove lemmas about the unreachability

of classes of states. Eventually, the goal is to reduce

the state space to one small enough to be examined

by exhaustive search to determine whether or not an

attack on the protocol is possible.

The NRL Protocol Analyzer by itself does not assist

the user in de�ning an insecure state. However a re-

quirements language based on temporal logic is being

developed for use with the Analyzer [SM93, SM94].

The user can specify a set of requirements that are

then translated into characterizations of states that

should be unreachable in a secure protocol. He or she

can then use the Analyzer to either prove that these

states are unreachable, or to �nd paths to them.

3 An Overview of the Abadi-Tuttle

Model of Computation

In this section we give a brief account of the Abadi-

Tuttle model of computation as described in [AT91].

Since it will be discussed in more depth in the next

section, we do not go into too much detail here.

In the Abadi-Tuttle model, a system is a �nite col-

lection of principals who communicate by sending mes-

sages to each other. A global state is a tuple of local

states. There is also a distinguished principal Pe called

the environment. The environment state encodes all

interesting aspects of the global state that can't be

deduced from the principals' states, such as messages

in transit. In any given state, a principal can change

the local state by performing an action. Each prin-

cipal has a set of actions it can perform. An action

is identi�ed with a state-transition relation in which

only the principal's and the environment's states are

changed.

A local protocol for a principal P is a function

of P's local state. A single action can result in a

change to only one local state. A protocol is a tu-

ple of (Ae,Ai,...,An) of local protocols, one Ae for Pe

and one Ai for each Pi.

A run is an in�nite sequence of global states. A sys-

tem is a set R of runs, typically the set of executions

of a given protocol. Integer times are assigned to each

state in a run, in increasing order. The time zero is

assigned to the �rst state of the current authentica-

tion. Thus any state preceding that state is given a

negative time.

A principal Pi's local state includes a local history

(the sequence of all actions the principal has ever per-

formed) and a key set (the set of all keys the principal

holds). The environment's local state includes a global

history, a key set, and a message bu�er for each prin-

cipal. Each principal can perform actions including

send, receive, and the generation of a new key.

Encryption is assumed to be perfect; that is, no in-

formation can be gleaned from an encrypted message

unless the key is known. Two operations are de�ned.

One, seen-submsgs, takes a message M and a princi-

pal's key set and determines all messages that it has

seen as a result of seeing M. The other, said-submsgs,

takes a message M, a principal's key set, and all mes-

sages received by that principal, and determines what

the principal has said as a results of sending M.

Abadi and Tuttle also make certain syntactic re-

strictions on runs. We will discuss these in detail in

the next section.

4 The NRL Protocol Analyzer Model

of Computation

As in the Abadi-Tuttle model, the NRL Protocol

Analyzer model de�nes a system as a �nite collection

of principals who communicate by sending messages to

each other. At any given time, a principal is in a local

state. A global state is a tuple of local states. Again,

as in the Abadi-Tuttle model, there is also a distin-

guished principal Pe called the environment. The en-

vironment state includes the set of words known by

the intruder, and certain facts such as the vulnera-

bility of a key to compromise. We include the latter

in the environment state instead of the local state be-

cause a key can remain vulnerable to compromise long

after it has been discarded by the principals for whom

it was generated.

In both the Abadi-Tuttle and the NRL model, in

any given state a principal can change the local state

by performing an action. Each principal has a set of

actions it can perform associated with it. An action

is identi�ed with a state-transition relation in which

only the principal's and the environment's states are

changed.

One feature of the NRL Protocol Analyzer is its

ability to detect and prove invulnerability to inter-

leaving attacks, a term used by Syverson [Syv93] to

describe protocol attacks in which an intruder spoofs

the principals by participating in several di�erent ses-

sions simultaneously and causing a principal to accept



a message from one context as a message appropriate

to another.1 An attack of this sort found by the NRL

Protocol Analyzer is described in [SM94].

In many cases (including the attack cited above)

an interleaving attack depends upon a principal's par-

ticipating in several sessions simultaneously, so it is

necessary to be able to express this in the model of

computation. We do so as by dividing up local states

into substates as follows.

The local state of a principal Pi is divided into

an in�nite set of substates Sij. One of these sub-

states, Si0 contains information relevant to Pi that is

assumed never to change, such as master keys. Of the

other substates, only a �nite number are nonempty,

although an empty substate can be made nonempty

by an action. For the environment, there is only one

substate, the environment's total local state. A lo-

cal protocol for a principal Pi is a function from Si0
together with at most one local substate Sij to the

next action P is to perform. A single action can re-

sult in a change only to Sij. A protocol is a tuple of

(Ae,Ai,...,An) of local protocols, one Ae for Pe and one

Ai for each Pi.

We assume a principal Pi's local state includes a

local history (the sequence of all actions the principal

has ever performed) and a knowledge set (the set of

everything the principal knows). Each substate is a

projection of the local history and the knowledge set.

All substates are disjoint. The environment Pe's state

includes a global history (the sequence of actions any

principal has performed) and a knowledge set which

includes the content of all messages sent by principals.

For both Pi and Pe, the knowledge set includes not

only words but what is known about the words. Thus

Pi may only know that K is a word that is claimed to

be a key. Later, it may know that K has passed all

the tests for a key.

A run is an in�nite sequence of global states. In-

teger times are assigned to each state in a run. Like-

wise, each local state is assigned a local time, which in-

creases only when the local state changes. The initial

state is assigned the time zero. This di�ers fromAbadi

and Tuttle, who assign the time zero to the �rst state

of the current authentication. Our reason for choosing

this assigment is that in the NRL Protocol Analyzer

there is no well-de�ned notion of a current authenti-

cation, since several di�erent protocol executions may

be interleaved, and a principal may be participating

in two or more sessions at once.

1
These kinds of attacks are called parallel attacks by Bird et

al.[BGH
+
93], who also use the term \interleaving" to describe

any attack that involves the insertion of a message generated in

one one session into another.

We assume that the set of actions a principal P can

perform include the following, corresponding closely

to Abadi and Tuttle, except that the newkey action is

replaced by the more general changeset action.

1. send(i,m,Q) denotes P's sending message m to Q.

The send becomes part of P's local substate i. As

soon as m is sent, it becomes part of Pe's knowl-

edge set.

2. receive(m,Q) denotes P's receiving a message m

purportedly coming from Q, where m belongs to

P0

es knowledge set.

3. changeset(i,K,L) denotes P's changing its local

knowledge subset i by adding K and deleting L.

Furthermore, each action appends itself to the end

of the principal's local history and the environment's

local history. We actually append receive(i,m,Q) to

each history, in order to tag the receive action with

the local substate to which it is relevant. This local

substate is chosen using information that is not repre-

sented in the protocol (that is, is in a nonsecure part

of the message), so the choice may be considered non-

deterministic.

Our assumptions about perfect encryption are the

same as Abadi and Tuttle.

Abadi and Tuttle de�ne two operations. One, seen-

submsgs, takes a message M and returns the compo-

nents of M that a principal P can read. The other,

said-submsgs, takes a message M, P's key set, and the

set of all messages received by P so far, and returns

the components of M that P is considered to have said

as the result of sending M.

The seen-submsgs operation corresponds to NRL

Protocol Analyzer operations such as encryption, de-

cryption, concatenation, and removal from a list. The

main di�erences are that the set of operations are de-

�ned by the user (although concatenation and removal

from a list are built in) and that the number of words

that can be derived from a message by applying the

operations is in�nite. Thus operations must be spec-

i�ed separately instead as one single operation, since

that single operation would produce an in�nite num-

ber of words.

The closest analog to the said-submsgs operation is

the means by which a principal decides to \accept" a

message after performing a series of operations on it

or other message. In this case \acceptance" means to

store in a state variable marked \accepted". The rules

by which a principal decides to accept a message are

again decided by the protocol speci�er. A major di�er-

ence is that the Abadi-Tuttle said-submsgs operation



is meant to describe sound rules for deriving beliefs

about message, while the protocol speci�er's accep-

tance rules may or may not be sound. It is the job of

the NRL Protocol Analyzer to determine whether or

not the rules are sound by examining all paths leading

to the accept operation.

Unlike the Abadi-Tuttle model, in the NRL model

operations are always associated with actions. To each

principal P we associate a set of operations that P can

perform. Pe performs the operation by performing an

action send(0,m,Pe) where m is the result of perform-

ing the operation on words in Pe's knowledge set. Any

other principal performs the operation by adding to its

knowledge set the result of applying the operation on

words from its knowledge set.

Next we give Abadi and Tuttle's syntactic restric-

tions on runs and show how they map to restrictions

on runs in the NRL Protocol Analyzer model.

1. A principal's key set never decreases.

This holds only for the intruder's knowledge set.

Other principal's knowledge sets can both in-

crease and decrease.

2. A message must be sent before it is received.

The same restriction holds for the NRL Protocol

Analyzer.

3. A principal must possess keys it uses for encryp-

tion.

A principal can only perform operations on words

in its knowledge set.

4. A system principal sets \from" �elds correctly.

No such assumption is made in the NRL Protocol

Analyzer model.

5. A system principal must see messages it forwards.

A principal sends a message only if it is in its

knowledge set or if it can be obtained by per-

forming operations available to that principal on

words in its knowledge set.

5 Discussion

We have developed a model of computation for

the NRL Protocol Analyzer and have shown how it

compares with the Abadi-Tuttle model for their ver-

sion of BAN Logic. The most notable di�erences we

found were the necessity in the NRL Protocol Ana-

lyzer model of building in an explicit representation

of interleaved protocol executions in order to have the

ability to reason about interleaving attacks, the di�er-

ence in meaning between the said-submsgs operation

of Abadi-Tuttle and the acceptance operations of the

NRL Protocol Analyzer, and the monoticity of the

Abadi-Tuttle model versus the non-monoticity of the

NRL model.

The necessity of modifying the Abadi-Tuttle model

to capture the notion of interleaving used by the NRL

Protocol Analyzer may give us some insight into why

the Abadi-Tuttle and BAN logics have not done very

well in identifying protocols that were vulnerable to

interleaving attacks. On the other hand, Syverson

[Syv93] has shown how to express interleaving attacks

in a manner consistent with the Abadi-Tuttle seman-

tics, by introducing a temporal operator that corre-

sponds to the notion of time in Abadi-Tuttle. Thus the

comparative inability of BAN logic to detect protocols

vulnerable to interleaving attacks may be a problem of

the logic, not of its semantics. However, the need for

modifying the Abadi-Tuttle logic in this respect may

also point out a potential problem in integrating the

Protocol Analyzer with Abadi-Tuttle logic.

The di�erence between the said-submsgs operation

and the acceptance operations points out a possible

way in which we can use the NRL Protocol Analyzer

as model checker for the Abadi-Tuttle logic. If we

can translate the said-submsgs operation into accep-

tance operations in a consistent way, then we could

use the Protocol Analyzer to check their soundness by

attempting to generate paths to an acceptance state

and see if any of them uncover successful attacks.

The nonmonoticity of the Protocol Analyzer (that

is the fact that words can be deleted from knowl-

edge states as well as added) versus the monoticity

of the Abadi-Tuttle logic may present some problems.

The monoticity of Abadi-Tuttle logic is one of the fea-

tures that makes it tractable. On the other hand,

we found nonmonoticity a more natural way of rep-

resenting principal actions for the Protocol Analyzer.

Developing a natural way of writing monotonic proto-

col speci�cations for the Protocol Analyzer may be a

challenge.

Other features of the models have much in com-

mon. The environment principal Pe behaves much

the same way in both models, and the notion of ac-

tion in Abadi-Tuttle corresponds closely to the same

notion in the NRL Protocol Analyzer. In other cases

Abadi-Tuttle is more restrictive than the NRL Proto-

col Analyzer, for example, in the assumptions about

how principals interpret messages, and the use of key

sets instead of knowledge sets. In some cases the Pro-



tocol Analyzer can be made consistent with Abadi-

Tuttle by introducing the restrictions there as well.

In other cases this might not be so straightforward;

for example, the knowledge set plays too important a

role to be restricted to the key set. This is partly be-

cause the Abadi-Tuttle model makes use of received

messages together with the seen-submsgs operation

to determine the words a principal knows, while in

the NRL Protocol Analyzer operations only present a

means for generating words that can be stored in the

knowledge set. If we assumed that principals knew all

words generated by the operations, then we would as-

sume that each principal knew an in�nite number of

words, which would render analysis intractable.

6 Conclusion

We have attempted to compare the Abadi-Tuttle

logic and the NRL Protocol Analyzer from the point

of view of their possible integration. We have done so

by constructing a model of computation for the NRL

Protocol Analyzer based on the Abadi-Tuttle model

and showing where they di�er and where they agree.

At this point we do not make any recommendations

about the possibility of integrating the NRL Protocol

Analyzer with Abadi-Tuttle, but we have identi�ed

several problem areas as well as some possible bene�ts.

The model of computation that we have produced can

also be used as a point of comparison with models for

other protocol analysis logics.

7 Acknowledgements

I would like to thank Paul Syverson for suggesting

adapting the Abadi-Tuttle model of computation to

the NRL Protocol Analyzer as a way of comparing

the two systems.

References

[AT91] Mart��n Abadi and Mark Tuttle. A Seman-

tics for a Logic of Authentication. In Pro-
ceedings of the Tenth ACM Symposium on
Principles of Distributed Computing, pages
201{216. ACM Press, August 1991.

[BAN90] Michael Burrows, Mart��n Abadi, and

Roger Needham. A Logic of Authentica-

tion. ACM Transactions in Computer Sys-
tems, 8(1):18{36, February 1990.

[BGH+93] Ray Bird, I. Gopal, Amir Herzberg,

Philippe Jensen, Shay Kutten, Re�k

Molva, and Moti Yung. Systematic Design

of a Family of Attack-Resistant Authenti-

cation Protocols. IEEE Journal of Selected
Areas of Communication, 11(5):679{693,

June 1993.

[DY83] D. Dolev and A. Yao. On the Security

of Public Key Protocols. IEEE Transac-
tions on Information Theory, 29(2):198{
208, March 1983.

[GKSG91] V.D. Gligor, R. Kailar, S. Stubblebine, and

L. Gong. Logics for Cryptographic Proto-

cols | Virtues and Limitations. In Pro-
ceedings of the Computer Security Founda-
tions Workshop IV, pages 219{226. IEEE
Computer Society Press, Los Alamitos,

California, 1991.

[Mea94] Catherine Meadows. The NRL Protocol

Analyzer: An Overview. In Proceedings
of the Second International Conference on
the Practical Applications of Prolog. to ap-
pear, 1994.

[Nes90] D. M. Nessett. A Critique of the Bur-

rows, Abadi, and Needham Logic. Oper-
ating Systems Review, 24(2):35{38, April
1990.

[SM93] Paul Syverson and Catherine Meadows. A

Logical Language for Specifying Crypto-

graphic Protocol Requirements. In Pro-
ceedings of the 1993 IEEE Computer So-
ciety Symposium on Research in Security
and Privacy, pages 165{177. IEEE Com-

puter Society Press, Los Alamitos, Cali-

fornia, 1993.

[SM94] Paul Syverson and Catherine Meadows.

Formal Requirements for Key Distribution

Protocols. In Proceedings of Eurocrypt '94.
Springer-Verlag, to appear 1994.

[Syv92] Paul F. Syverson. Knowledge, Belief,

and Semantics in the Analysis of Crypto-

graphic Protocols. Journal of Computer
Security, 1(3):317{334, 1992.

[Syv93] Paul F. Syverson. Adding Time to a Logic

of Authentication. In Proceedings of the
First ACM Conference on Computer and
Communications Security, pages 97{101.

ACM Press, New York, November 1993.


